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Abstract 
Intrusion detection technique is important subtask that aggregates alert. Alert aggregation goal is to identify 

& to cluster different alert belonging to a specific attack instance which has been initiated by an attacker at a certain 
point in time. Meta-alerts may then be the basis for reporting to security experts or for communication within a 
distributed intrusion detection system. Alert aggregation which is based on a dynamic, probabilistic model of the 
current attack situation, it can be regarded as a data stream version of a maximum likelihood approach for the 
estimation of the model parameters. Meta-alerts are generated with a delay of typically only a few seconds after 
observing the first alert belonging to a new attack instance. We make the system more efficient in identifying the 
intrusion alerts and also we extend this work by sending the Alerts as Message to the Network Administrator who 
governs the Network or Intrusion Detection System. 
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     Introduction 
Intrusion detection systems are the `burglar 

alarms' of the computer security field. IDS usually 
focus on detecting attack types, but not on 
distinguishing between different attack instances. In 
addition, even low rates of false alerts could easily 
result in a high total number of false alerts if 
thousands of network packets or log file entries are 
inspected. As a consequence, the IDS Data Stream 
Intrusion Alert Aggregation creates many alerts at a 
low level of abstraction. It is extremely difficult for a 
human security expert to inspect this flood of alerts, 
and decisions that follow from single alerts might be 
wrong with a relatively high probability. 

 
Fig 1: illustrates a simple network, which is protected 

using IDS. 
a “perfect” IDS should be situation-aware[2]  in the 
sense that at any point in time it should “know” what 
is going on in its environment regarding attack 
instances (of various types) and attackers. In this 
paper, we make an important step toward this goal by 
introducing and evaluating a new technique for alert 

aggregation. Alerts may originate from low-level IDS 
such as those mentioned above, from firewalls (FW), 
etc. Alerts that belong to one attack instance must be 
clustered together and meta-alerts must be generated 
for these clusters. The main goal is to reduce the 
amount of alerts substantially without losing any 
important information which is necessary to identify 
ongoing attack instances.  
Our approach  has the following distinct properties: 

1. It is a generative modeling approach [3] 
using probabilistic methods. Assuming that 
attack instances can be regarded as random 
processes “producing” alerts, we aim at 
modeling these processes using approximate 
maximum likelihood parameter estimation 
techniques. Thus, the beginning as well as 
the completion of attack instances can be 
detected. 

2. It is a data stream approach, i.e., each 
observed alert is processed only a few times 
[4]. Thus, it can be applied online and under 
harsh timing constraints. 

 
Related Work 

IDS are optimized to detect attacks with 
high accuracy. However, they still have various 
disadvantages that have been outlined in a number of 
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publications and a lot of work has been done to 
analyze IDS in order to direct future research (cf. [5], 
for instance). Besides others, one drawback is the 
large amount of alerts produced. Recent research 
focuses on the correlation of alerts from (possibly 
multiple) IDS. If not stated otherwise, all approaches 
outlined in the following present either online 
algorithms or—as we see it—can easily be extended 
to an online version. Probably, the most 
comprehensive approach to alert correlation is 
introduced in [6]. One step in the presented 
correlation approach is attack thread reconstruction, 
which can be seen as a kind of attack instance 
recognition. No clustering algorithm is used, but a 
strict sorting of alerts within a temporal window of 
fixed length according to the source, destination, and 
attack classification (attack type). In [7], a similar 
approach is used to eliminate duplicates, i.e., alerts 
that share the same quadruple of source and 
destination address as well as source and destination 
port. In addition, alerts are aggregated (online) into 
predefined clusters (so-called situations) in order to 
provide a more condensed view of the current attack 
situation. The definition of such situations is also 
used in [8] to cluster alerts. In [9], alert clustering is 
used to group alerts that belong to the same attack 
occurrence. Even though called clustering, there is no 
clustering algorithm in a classic sense. The alerts 
from one (or possibly several) IDS are stored in a 
relational database and a similarity relation—which 
is based on expert rules—is used to group similar 
alerts together. Two alerts are defined to be similar, 
for instance, if both occur within a fixed time 
window and their source and target match exactly. As 
already mentioned, these approaches are likely to fail 
under real-life conditions with imperfect classifiers 
(i.e., low-level IDS) with false alerts or wrongly 
adjusted time windows. 

In [15], three different approaches are 
presented to fuse alerts. The first, quite simple one 
groups alerts according to their source IP address 
only. The other two approaches are based on different 
supervised learning techniques. Besides a basic least-
squares error approach, multilayer perceptrons, radial 
basis function networks, and decision trees are used 
to decide whether to fuse a new alert with an already 
existing meta-alert (called scenario) or not. Due to 
the supervised nature, labeled training data need to be 
generated which could be quite difficult in case of 
various attack instances. 

An offline clustering solution based on the 
CURE algorithm is presented. The solution is 
restricted to numerical attributes. In addition, the 
number of clusters must be set manually. This is 
problematic, as in fact it assumes that the security 
expert has knowledge about the actual number of 

ongoing attack instances. The alert clustering solution 
described in [11] is more related to ours. A link-
based clustering approach is used to repeatedly fuse 
alerts into more generalized ones. The intention is to 
discover the reasons for the existence of the majority 
of alerts, the so called root causes, and to eliminate 
them subsequently. An attack instance in our sense 
can also be seen as a kind of root cause, but in [11] 
root causes are regarded as “generally persistent” 
which does not hold for attack instances that occur 
only within a limited time window. Furthermore, 
only root causes that are responsible for a majority of 
alerts are of interest and the attribute-oriented 
induction algorithm is forced “to find large clusters” 
as the alert load can thus be reduced at most. Attack 
instances that result in a small number of alerts (such 
as PHF or FFB) are likely to be ignored completely. 
The main difference to our approach is that the 
algorithm can only be used in an offline setting and is 
intended to analyze historical alert logs. In contrast, 
we use an online approach to model the current attack 
situation. The alert clustering approach described in 
[12] is based on [11] but aims at reducing the false 
positive rate. The created cluster  structure is used as 
a filter to reduce the amount of  reated alerts. Those 
alerts that are similar to already  known false 
positives are kept back, whereas alerts that are 
considered to be legitimate (i.e., dissimilar to all 
known false positives) are reported and not further 
aggregated. The same idea—but based on a different 
offline clustering algorithm—is presented in [21]. 
 
Online Alert Aggregation 

To outline the preconditions and objectives 
of alert aggregation, we start with a short sketch of 
our intrusion framework. Then, we briefly describe 
the generation of alerts and the alert format. We 
continue with a new clustering algorithm for offline 
alert aggregation which is basically a parameter 
estimation technique for the probabilistic model. 
After that, we extend this offline method to an 
algorithm for data stream clustering which can be 
applied to online alert aggregation. Finally, we make 
some remarks on the generation of meta-alerts 
A.Collaborating Intrusion Detection Agents 

 
Fig.2 Architecture of an intrusion detection agent. 
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Fig. 2 outlines the layered architecture of an 
ID agent:The sensor layer provides the interface to 
the network and the host on which the agent resides. 
Sensors acquire raw data from both the network and 
the host, filter incoming data, and extract interesting 
and potentially valuable (e.g., statistical) information 
which is needed to construct an appropriate event. At 
the detection layer, different detectors, e.g., 
classifiers trained with machine learning techniques 
such as support vector machines (SVM) or 
conventional rule-based systems such as Snort [24], 
assess these events and search for known attack 
signatures (misuse detection) and suspicious behavior 
(anomaly detection). In case of attack  suspicion, they 
create alerts which are then forwarded to the alert 
processing layer. Alerts may also be produced by FW 
or the like. At the alert processing layer, the alert 
aggregation module has to combine alerts that are 
assumed to belong to a specific attack instance. Thus, 
so called meta-alerts are generated. Meta-alerts are 
used or enhanced in various ways, e.g., scenario 
detection or decentralized alert correlation. An 
important task of the reaction layer is reporting. 

The overall architecture of the distributed 
intrusion detection system and a framework for large-
scale simulations are described in [25], [26] in more 
detail. 

In our layered ID agent architecture, each 
layer assesses, filters, and/or aggregates information 
produced by a lower layer. Thus, relevant 
information gets more and more condensed and 
certain, and, therefore, also more valuable. We aim at 
realizing each layer in a way such that the recall of 
the applied techniques is very high, possibly at the 
cost of a slightly poorer precision [27].  
B. Alert Generation and Format 

In this section, we make some comments on 
the information contained in alerts, the objects that 
must be aggregated, and on their format. At the 
sensor layer,sensors determine the values of attributes 
that are used as input for the detectors as well as for 
the alert clustering module. Attributes in an event that 
are independent of a particular attack instance can be 
used for classification at the detection layer. 
Attributes that  are (or might be) dependent on the 
attack instance can be used in an alert aggregation 
process to distinguish different attack instances. A 
perfect partition into dependent and independent 
attributes, however, cannot be made. Some are 
clearly dependent (such as the source IP address 
which can identify the attacker), some are clearly 
independent such as the destination port which 
usually is 80 in case of web based attacks), and lots 
are both (such as the destination port which can be a 
hint to the attacker’s actual target service as well as 
an attack tool specifically designed to target a 

particular service only). In addition to the attributes 
produced by the sensors, alert aggregation is based on 
additional attributes generated by the detectors. 
Examples are the estimated type of the attack 
instance that led to the generation of the alert (e.g., 
SQL injection, buffer overflow, or denial of service), 
and the degree of uncertainty associated with that 
estimate. 
C. Offline Alert Aggregation 

In this section, we introduce an offline 
algorithm for alert aggregation which will be 
extended to a data stream algorithm for online 
aggregation in  Assume that a host with an ID agent 
is exposed to a certain intrusion situation. One or 
several attackers launch several attack instances 
belonging to various attack types. The attack 
instances each cause a number of alerts with various 
attribute values. The task of the alert aggregation 
module is now to estimate the  assignment to 
instances by using the unlabeled  observations only 
and by analyzing the cluster structure in the attribute 
space. That is, it has to reconstruct the attack 
situation. Then, meta-alerts can be generated that are 
basically an abstract description of the cluster of 
alerts assumed to originate from one attack instance. 
Thus, the amount of data is reduced substantially 
without losing important information.There may be 
different potentially problematic situations: 

1. False alerts are not recognized as such and 
wrongly assigned to clusters: This situation 
is acceptable as long as the number of false 
alerts is comparably low. 

2. True alerts are wrongly assigned to clusters: 
This situation is not really problematic as 
long as the majority of alerts belonging to 
that cluster is correctly assigned. Then, no 
attack instance is missed. 

3. Clusters are wrongly split: This situation is 
undesired but clearly unproblematic as it 
leads to redundant meta-alerts only. Only 
the data reduction rate is lower, no attack 
instance is missed. 

4. Several clusters are wrongly combined into 
one:This situation is definitely problematic 
as attack instances may be missed. 
EM(Expectation Maximization) procedure 

for our attack situation model is shown in Algorithm 
1. It iteratively maximizes the likelihood with two 
alternating computation steps: E (expectation) and M  
maximization). The E step assigns the alerts to 
components—resulting in a partition of the set A 
with J clusters—and the M step optimizes the 
parameters of the mixture model. 
Some additional remarks must be made: 
 
Initialization of model parameters: The aim of the 
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initialization is to find good initial values. Instead of 
using a random initialization which results in higher 
runtimes and sub-optimal solutions, we use a 
heuristic which we have successfully applied to the 
training of radial basis function neural networks [31].  

Hard assignment of alerts to components: 
More general EM algorithms make a gradual 
assignment of alerts to components in the E step (cf. 
responsibilities in [3]). In practical applications, a 
hard assignment reduces the runtimes significantly at 
the cost of slightly worse solutions in some 
situations. In our case, this is acceptable as we do not 
want to find the optimal model parameters at the end, 
but to generate the optimal set of meta-alerts. 

Stopping criterion. An EM algorithm 
guarantees that the set of parameters is improved in 
each step. In addition, due to the hard assignment of 
alerts, there exists a limited number of possible 
assignments. For the sake of simplicity, however, we 
usually run the algorithm for a fixed number of 
iterations. 

Fixed mixing coefficients. One of the main 
difficulties in alert aggregation is the wide range of 
possible cluster sizes. There are clusters that contain 
thousands of alerts, but there are also clusters that 
consist of a few alerts only. For instance, a Neptune 
attack instance may result in 200,000 alerts whereas a 
PHF attack instance may consist of only five alerts 
[32]. Thus, in contrast to a more general EM 
approach, it is important to fix the mixing 
coefficients.Otherwise, if the mixing coefficients 
were estimated from the observed samples, the EM 
algorithm would focus on the optimization of the 
parameters of “heavy” components while neglecting 
the “light” ones. 
D. Data Stream Alert Aggregation 

In this section, we describe how the offline 
approach is extended to an online approach working 
for dynamic attack situations. 
Assume that in the environment observed by an ID 
agent attackers initiate new attack instances that 
cause alerts for a certain time interval until this attack 
instance is completed.  

1. Component adaption: Alerts associated with 
already recognized attack instances must be 
identified as such and assigned to already 
existing clusters while adapting the 
respective component parameters. 

 
2. Component creation: The occurrence of new 

attack instances must be stated. New 
components must be parameterized 
accordingly.  
 

3. Component deletion: The completion of 
attack instances must be detected and the 

respective components must be deleted from 
the mode 

 

 
 
Algorithm 2 describes the online alert aggregation. If 
a new alert is observed we first have to decide 
whether a first component has to be created. In this 
case, we initialize its parameters with information 
taken from this alert. Random, small values are 
added, for example, to prevent any subsequent 
optimization steps from running into singularities of 
the respective likelihood function [3]. Otherwise, we 
have to decide whether the alert has to be associated 
with an existing component or not, i.e., whether we 
believe that it belongs to an ongoing attack instance 
or not. Provisionally, we assign the alert to the most 
likely component (E step) and optimize the 
parameters of this component (M step). 

This procedure is initiated either when the 
temporal spread of the buffer content is too large or 
when the content is no longer homogeneous in the 
sense that we assume that another new attack 
instance may have been initiated: 
 

1. Temporal spread: As the rate of incoming 
alerts depends on the current attack 
situation, it changes heavily over time 
ranging from thousands of alerts per minute 
to only a few alerts per hour. Thus, to keep 
the response time short, we have to take into 
account the  temporal spread of the buffer 
content. 
2. Homogeneity: The goal is to ensure that 
only alerts that are similar to each other are 
stored in the buffer. Thus, it is possible that 
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the novelty handling conducts—for temporal 
performance reasons. 
 

 
 

In order to reduce the runtime of this 
algorithm further,we may reduce the number of alerts 
that have to be processed by means of an appropriate 
subsampling. 
  Algorithm 3 describes the novelty handling 
itself. Basically, to adapt the overall model, we run 
the offline aggregation algorithm several times with 
different possible component numbers to chose the 
optimal number. However, due to the homogeneity of 
the buffer, we may ] 
E. Meta-Alert Generation and Format 

With the creation of a new component, an 
appropriate metaalert that represents the information 
about the component in an abstract way is created. 
Every time a new alert is added to a component, the 
corresponding meta-alert is updated incrementally, 
too. That is, the meta-alert “evolves” with the 
component. Meta-alerts may be the basis for a whole 
set further tasks . Sequences of meta-alerts may be 
investigated further in order to detect more complex 
attack scenarios(e.g., by means of hidden Markov 
models).Meta-alerts may be exchanged with other ID 
agents in order to detect distributed attacks such as 
one-to many attacks. . Based on the information 
stored in the meta-alerts, reports may be generated to 
inform a human security expert about the ongoing 
attack situation. Meta-alerts could be used at various 
points in time from  the initial creation until the 
deletion of the corresponding component (or even 
later). For instance, reports could be created 
immediately after the creation of the component or—
which could be more preferable in some cases—a 
sequence of updated reports could be created in 
regular time intervals. Another example is the 

exchange of metaalerts between ID agents: Due to 
high communication costs,meta-alerts could be 
exchanged based on the evaluation of    their  
interestingness. 
 
Experimental Results 

In the following, the results for the alert 
aggregation are presented. For all experiments, the 
same parameter settings are used. We set the 
threshold _ that decides whether to add a new alert to 
an existing component or not to five percent, and the 
value for the threshold _ that specifies the allowed 
temporal spread of the alert buffer to 180 seconds. _ 
was set that low value in order to ensure that even a 
quite small degrade of the cluster quality, which 
could indicate a new attack instance, results in a new 
component.  

First of all, it must be stated there is an 
operation point of the SVM at the detection layer (OP 
1) where we do not miss any attack instances at all (at 
least in addition to those already missed at the 
detection layer). The reduction rate is with 99.87 
percent extremely high, and the detection delay is 
only 5.41 s in the worst case (d100%). Average and 
worst case runtimes are very good, too. All OP will 
now be analyzed in much more detail. All attack 
instances for which the detector produces at least a 
single alert are detected in the idealized case and with 
OP 1 and OP 2. Choosing another OP, the rate of 
detected instances drops to 98.04 percent (OP 3) and 
99.02 percent (OP 4). In OP 3, a FORMAT instance 
and a MULTIHOP instance are missed. In OP 4, only 
the FORMAT instance could not be detected. A 
further analysis identified the following reasons: 
 The main reason in the case of the FORMAT 
instance is the small number of only four alerts. 
Those alerts are created by the detector layer for all 
OP, i.e., there is obviously no benefit from choosing  
an OP with higher FPR. By increasing the FPR, the 
true FORMAT alerts are erroneously merged with 
false alerts into one cluster. Hence, as the false alerts 
easily outnumber the four true FORMAT alerts 
within this cluster, the FORMAT instance gets lost. . 
For the MULTIHOP instance, for which we have 19 
alerts, the situation is more complex. The instance 
is only missed in OP 3 and not in OP 4. In OP 3, the 
downside of a higher FPR outweighs the benefit of a 
higher TPR—the MULTIHOP alerts are merged with 
a large number of false alerts. Further increasing the 
FPR (OP 4) leads to more false alerts as well, but, in 
this case, also to a further split of clusters such that 
the false alerts and the MULTIHOP alerts are placed 
into separate clusters. Next, we analyze the number 
of meta-alerts MA and the reduction rate r. In the 
idealized case, 324 meta-alerts are created. Compared 
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to the about 1.6 million alerts, we get a reduction rate 
of 99.98 percent, which is a reduction of almost three 
orders of magnitude. Unfortunately, with exception 
of the first of seven weeks, it was not possible to 
achieve the ideal case with exactly one meta-alert for 
every attack instance.  Basically, there are four 
reasons: 

Distinguishable steps of an attack type: 
Often, a split of attack instances into more meta-
alerts is caused by the nature of the attacks 
themselves. Actually, many attack types consist of 
different, clearly distinguishable steps. As an 
example, the FTP-WRITE attack exhibits three such 
steps: an FTP login on port 21, an FTP data transfer 
on port 20, and a remote login on port 513. Thus, a 
split into three related meta-alerts is quite natural. 
Subsequent tasks at the alert processing layer are 
supposed to handle such multistep attack scenarios 
(cf. Fig. 1). 

Several independent attackers: In the 
DARPA data set, some attack instances are labeled as 
a single attack instance although they are in fact 
comprised of the actions of several independent 
attackers.  
Long attack duration: Attack instances with a long 
duration are often split into several meta-alerts. 
Typical examples are slow or hidden port scans or 
(distributed) denial of service attacks which can last 
several hours. 

Bidirectionalcommunication:TCP/IP-based 
communication between two hosts results in packets 
transmitted in both directions. If the detector layer 
produces alerts for both directions (e.g., due to 
malicious packets), the source and destination IP 
address are swapped, which in the end results in two 
meta-alerts. This problem could be solved with an 
appropriate preprocessing step. 
 
Conclusion 

The experiments demonstrated the broad 
applicability of the proposed online alert aggregation 
approach. We analyzed three different data sets and 
showed that machine-learning-based detectors, 
conventional signaturebased detectors, and even 
firewalls can be used as alert generators. In all cases, 
the amount of data could be reduced 
substantially.especially clusters that are wrongly 
split—the instance detection rate is very high:  None 
or only very few attack instances were missed. 
Runtime and component creation delay are well 
suited for an online application. 
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